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Abstract--The linear stability of natural convection in a tall vertical annulus with inner-cylinder motion 
was studied. The results show that the stability characteristics are significantly modified by the inner- 
cylinder motion. For a small Prandtl number fluid with a smaller radius ratio. the shear instability is 
dominant and the non-axisymmetric disturbance (nt = I) is most unstable no matter in which direction 
the inner cylinder is moving. For higher downward motion, the non-axisymmetric mode (IPI = 2) may 
replace modes m = 0 and I for some radius ratios. For higher Prandtl number fluids. the most unstable 
mechanism switches from a buoyant mode generated by the boundary layer near the outer cylinder to a 
buoyant mode induced by the boundary layer near the inner cylinder with an increase of curvature as the 

inner cylinder is moving. 

1. INTRODUCTION 

It is well known that a fluid in a tall vertical annulus 

rises near the hot surface and sinks near the cold 
surface due to the influence of a buoyancy force. When 

the temperature difference is small enough, the flow is 
parallel and the heat transfer across the gap is due to 
conduction only. When the temperature difference is 
higher than a certain value, the parallel flow becomes 
unstable to a complex flow pattern, and heat is trans- 
ported by convection. The linear stability of natural 
convection in a tall vertical annulus with different wall 
temperatures has been studied by Choi and Korpela 
[I] and McFadden et rd. [2]. Choi and Korpela con- 
sidered only axisymmetric disturbances and found 
that the parallel flow is stabilized by the curvature and 
that for all Prandtl numbers the unstable parallel flows 
will become oscillatory traveling waves, The insta- 
bility of a fluid with a small Prandtl number is due to 
the action of the shear force, while for a fluid with a 
high Prandtl number it is generated by the buoyant 
mode. McFadden rt u/. went a step further, con- 
sidering both axisymmetric and non-axisymmetric dis- 
turbances. For Pr = 0.71 and 3.5, the least unstable 
disturbance is non-axisymmetric for smaller radius 
ratios and is axisymmetric for higher radius ratios. 
The results of McFadden rf (11. for Pr = 0.7 I are con- 

sistent with those of Choi and Korpela in that the 
instability is set in by the shear mode. For Pr = 3.5, 
the non-axisymmetric shear mode is replaced by the 
axisymmetric buoyant one for some aspect ratios. 

In recent years, the influence of a shear force on the 
stability properties of natural convection has become 
a subject of intense study. Mohamad and Viskanta [3] 
considered the linear stability of combined buoyancy 

and upper lid-driven shear flow in a shallow cavity. 

Their results showed that the upper lid motion sta- 
bilizes the flow for the Prandtl numbers they inves- 
tigated. Chen and Hsieh [4] studied the influence of a 
shear force induced by the motion of the side wall 
on the linear stability of natural convection in a tall 
vertical slot. Three types of instability occurred : for 
smaller Prandtl number fluids. the instability is domi- 
nated by the shear mode : for higher Prandtl number 
fluids. a buoyant instability induced by the boundary 
layer near the fixed (unmoving) sidewall dominates; 
the buoyant instability induced by the boundary layer 
near the moving wall, which is subjected to a slight 
downward motion, occurs for Prandtl numbers close 
to IO. 

In the present study. we consider the linear stability 
of natural convection in a tall vertical annulus with a 

heated inner cylinder under the influence of a shear 
force generated by the inner-cylinder motion. Both 
axisymmetric and non-axisymmetric disturbances are 
considered. The influence of the Reynolds and Prandtl 
numbers and radius ratio on the critical Grashof num- 
ber, critical wave number and critical wave speed are 
all investigated. 

2. FORMULATION AND SOLUTION 

Consider two infinitely long, vertical concentric 
cylinders of annular gap L (outer radius minus inner 
radius, Rz-RR,), enclosing a Newtonian fluid. The 
temperature of the inner cylinder, T,, is higher than 
that of the outer one, T2. The inner cylinder is moving 
up at a constant velocity U,,. Figure 1 shows a sche- 
matic of the annular geometry. A cylindrical coor- 
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NOMENCLATURE 

G non-dimensional critical wave speed Greek symbols 

9 acceleration of gravity thermal diffusivity 

Gr, critical Grashof number ; thermal expansion coefficient 

k axial wave number V radius ratio of the inner to outer 

L gap of the annulus cylinder 

m azimuthal wave number V kinematic viscosity 

P pressure P density 

Pr Prandtl number CT complex growth rate. 

Re Reynolds number 
t time 

Subscripts 

T temperature 
C critical value 

AT temperature difference 
1 inner cylinder 
2 

U, u, w r, 0, 2 velocity components 
outer cylinder. 

ULJ moving velocity of the inner cylinder Superscripts 

& characteristic velocity induced by base flow quantity 

buoyant force. perturbation quantity. 

dinate system is chosen with the positive z axis in the 
direction opposite to the gravity g. The temperature 
difference is assumed sufficiently small so that the 
density is treated as a constant everywhere in the 
governing equation, except in the gravitational term. 

This is the so-called Boussinesq approximation. 
Accordingly, the kinematic viscosity v, thermal diffu- 
sivity LX and thermal expansion coefficient /I are 
assumed to be constant. 

The governing equations are taken to be the 
Navier-Stokes equations in cylindrical coordinates 

(r, 0, z) for the velocity components (u, u, w), pressure 
p, and temperature T. The equations are made dimen- 

sionless by scaling length by the annular gap L, tem- 

perature by the temperature difference AT between 
the cylinders, time by L2/v, fluid velocity by 
Ii, = gjL2AT/v and pressure by pUi, where p is the 
density. The governing equations can be cast in the 
following non-dimensional forms with the same 
notations for convenience : 

(lb) 

z (Ic) 

ug+F$+wg 

= -Gr$ +V2w+ T* (Id) 

vaT* aT* 
uF+;w+wi:; 

where Gr = g/3L3AT/v2 is the Grashof number and 
T* = (T- To) the non-dimensional temperature 
difference measured relative to a reference state in 
equilibrium. 

A steady, vertical parallel flow is assumed for the 
Fig. 1. Schematic of the annular geometry. annulus with the form (u, v, w, T,p) = [0, 0, w(r), T(r), 
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p(z)]. Under this assumption equation (1 a)-( 1 d) can 

be reduced to 

(2a) 

0 (2b) 

with boundary conditions 

(2c) 

(2d) 

(2e) 

(2f) 

where 11 = R,IR2 is the radius ratio and Re = UbLjv 

the Reynolds number. 
The non-dimensional base temperature profile can be 

readily obtained from equations (2b), (2e) and (2f) as 

T=&ln[(l-q)r]. (3) 

Note that the pressure gradient explicitly involved 

in equation (2a) is induced by the flow related to the 
inner moving cylinder; because of its linearity, the 
problem can be considered as the superposition of the 
forced (isothermal) flow, w,, and the buoyancy-driven 
flow, M”*. The solutions of w, and wZ, after integrating 
twice and using the boundary conditions, are given by 

W,(V) = ArZ+Blnr+C (4a) 

H+(r) = - 

+ &+y+Dlnr+E (4b) 

where the values of A, B, C, D, E and To are given in 
the Appendix. Thus, the superposition of equation 
(4a) and (4b) gives the combined (forced and buoy- 
ancy-driven) flow. 

The infinitesimal disturbances were put into the 

governing equations using the following trans- 
formations : 

(u,z’,w,p, T*) = (O,O,w,p, T*)+(u’,o’,w’,p’, T’). 

(5) 

After substituting into the governing equations and 
boundary conditions, the portion resulting solely from 
the basic state was eliminated, the second- and higher- 
order terms were ignored, and normal modes of the 
form below with periodic disturbances in both the 0- 
and z-directions were assumed. 

f” = f(r) exp (ikz + im0 - iat) (6) 

wheref(r) is the complex amplitude function, and k 

and m are disturbance wave numbers in the axial 

and azimuthal directions, respectively. The complex 
eigenvalue 0 

cr = a,+i0, (7) 

contains the growth rate 0, and the frequency cr. The 
imaginary part of cr (i.e. aJ determines the stability 
(a, < 0) or instability (gL > 0) of the basic flow. The 
condition rr, = 0 corresponds to marginal stability. 

The linear disturbance equations become 

(84 

2im 
- c = ik Gr w - iau 

r2 
(8b) 

Dir, 1 Do lrn Gr 
r 

+-f$+“+$)‘. 

D2wj+E -ikGrp- 
r 

M 

(8d) 

(8e) 

where D = a/& denotes partial differentiation with 
respect to r. The boundary conditions remains as ; 

u=c=w=T=O at r=s/(l-q) 

and r = 1/(1-q). (9) 

The disturbance equations (8) with boundary con- 
ditions (9) are solved numerically by using a standard 
shooting procedure without orthonormalization. In 
this numerical procedure, a fourth-order Runge- 

Kutta scheme is used to integrate the disturbance 
equations from r = q/( 1 --;rl) or r = I/( 1-v). The 
number of integration steps employed in the calcula- 
tions is 400. From these conditions and subsequent 
uses of Newton’s method, values of Gr and rr corres- 
ponding to marginal stability are obtained for fixed k, 

Re, Pr, m and q. For the given values of Re and Pr, 

the critical Grashof number Gr, is the smallest mar- 
ginal value of Gr over the space of wave number k. 
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3. RESULTS AND DISCUSSION 

The calculations were performed for Pr = 0, 0. I, 
0.71 and 20 with Re = 0, 50, -50, - 100 and - 150. 

The critical values for various radius ratios are pre- 
sented in Figs. 2-5. As ye + 1. the stability boundaries 
of the flow in a vertical annulus are nearly consistent 
with those in a vertical slot predicted by Chen and 

Hsieh [4]. 
Figure 2 shows the plots of the critical Grashof 

number Gr, vs the radius ratio r~ for different values 
of Rr with Pr = 0.71. The instability is found to be 

dominated by the shear mode. For Re = 0, 50, -50 
and - 100, the critical values of Gr, for an axi- 
symmetric disturbance (m = 0) are slightly less than 

those for a non-axiymmetric disturbance (m = 1) for 
higher radius ratios. For smaller radius ratios, the 

non-axisymmetric disturbance (m = 1) becomes less 
unstable. The radius ratio which marks the transition 

between tn = 0 and m = I is about 4 = 0.43, which is 

very close to that predicted by of McFadden rt ul. [2], 
and may change insignificantly with the variation of 

the Reynolds number. For Rr = - 150, the most 

unstable disturbance is still axisymmetric for q > 0.58. 
The most unstable mode is tn = 2 for 0.23 < ‘1 < 0.58, 
while it becomes ttz = 1 for n < 0.23. The present 

results also show that the flow is stabilized by the 
downward motion of the inner cylinder. It is initially 

destabilized by smaller upward motion, and then sta- 

bilized by faster upward motion even though this is 
not shown in Fig. 2. The results are consistent with 

those predicted by Chen and Hsieh [4]. 
Figure 3 shows the variation of the critical Grashof 

number with the radius ratio for different Prandtl and 

Reynolds numbers. As mentioned by Hart [5] and 
Choi and Korpela [ 11. the instability of small Prandtl 

number fluids is induced by the shear mode while that 
of high Prandtl number fluids is generated by the 

buoyant mode. When the shear mode is dominant 
(Pr = 0, 0.1 and 0.71), the results show that Gr, for 

Re = 0, 50. -50 and - 100 increases as q decreases. 
This is due to the destabilizing effect of curvature. The 
results of RE = 0 [Fig. 3(a)] are consistent with the 

predictions of Choi and Korpela [l] except 7 < 0.43 
for Pr = 0. 0.1 and 0.71 where the non-axisymmetric 

mode (m = I) is dominant. For Re = - 150, the most 
unstable mode is tn = I for smaller radius ratios. As 

the radius ratio increases, the non-axisymmetric mode 
rn = I is replaced by 111 = 2. With a further increase 
of the radius ratio the axisymmetric mode (m = 0) 
becomes most unstable. The critical Grashof number 
increases with the radius ratio when the mode m = 1 
is dominant. When the mode rn = 2 is most unstable, 
the critical Grashof number decreases initially and 
then increases as the radius ratio increases. When the 
instability is induced by m = 0, the critical Grashof 
number decreases as the radius ratio increases. 

For Pr = 20, the instability is generated by the 
buoyant mode and the axisymmetric disturbance is 
most unstable. Choi and Korpela [l] and Chen and 

Hsieh [4] showed that for a vertical slot without side- 
wall motion, the buoyant instability causes two oscil- 
latory traveling waves moving in opposite directions. 
Choi and Korpela also showed that with the intro- 
duction of curvature only a single traveling wave in 
the direction opposite to gravity exists when buoyant 
instability occurs. Chen and Hsieh showed that with 
sidewall motion the buoyant instability for Pr = 20 is 
induced by the boundary layer near the fixed (unmov- 
ing) sidewall with a downward traveling velocity. 

Based on the results of Chen and Hsieh, we believe 
that the buoyant instability is generated by the boun- 

dary layer near the inner cylinder. In Fig. 3(a), the 
critical Grashof number for Pr = 20 decreases as the 
radius ratio decreases, when Re = 0. It is obvious that 
for Pr = 20 the flow is destabilized by the influence of 
curvature. The critical Grashof number for Pr = 20 is 
less than those for Pr = 0,O. 1 and 0.71. When Re # 0, 
the critical Grashof number initially increases with 

the radius ratio for smaller radius ratios, where the 
instability is caused by the boundary layer near the 
inner cylinder. After the critical Grashof number 
reaches a maximum value, it begins to decrease with 
an increasing radius ratio. For larger radius ratios, 
the instability is due to the boundary layer near the 
fixed outer cylinder. The maximum Grashof number 
occurs at the radius ratio where the transition between 
two buoyant modes appears. When Re = 50 [Fig. 
3(b)], the critical Grashof number for Pr = 20 at the 
transition point (q = 0.74) is higher than those for 

smaller Prandtl number. The results for Rr = - 150 
are not shown in Fig. 3(e) since the solutions do not 
converge very well. By comparison, the results show 
that for Pr = 20, the flow is stabilized by either 
upward or downward motion of the inner cylinder. 

Figure 4 shows the plots of the critical wave number 
in the axial direction vs the radius ratio for different 
values of Re. The discontinuous points for the results 
of Pr = 0, 0. I and 0.71 represent the locations where 
the transition between the different azimuthal wave 
numbers occurs. The critical wave number k, for 
Pr = 0, 0.1 and 0.71 increases with the radius ratio q 

except at the transition point between tn = 1 and 
rn = 2 for Re = - 150. For smaller Prandtl numbers, 
the critical number k, for Re < 0 increases when Re 
decreases. From Figure 4. we conjecture that the criti- 
cal wave number k, decreases when Rr increases. The 

present results are consistent with the results of the 
vertical slot [4]. As Pr = 20 and Re # 0, the critical 
wave number decreases with an increasing radius ratio 
for smaller radius ratios where the buoyant instability 
generated by the boundary near the inner cylinder is 
dominant. For larger radius ratio. the buoyant insta- 
bility induced by the boundary layer near the outer 
cylinder becomes dominant and the critical wave num- 
ber increases with an increase of the radius ratio. 

Figure 5 demonstrates the variation of the critical 
wave speed, which is defined as c, = cT,/(k, Gr,), with 
9 for different Rr and Pr. The critical wave speed 
for Pr = 0, 0.1 and 0.71 increases as the radius ratio 
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Fig. 2. The critical Grashof number for axisymmetric and non-axisymmetric disturbance as functions of 
theradiusratio:(a)Re=O;(b)Re=50;(c)Re=-50;(d)Re=-l00;(e)Re=-150. 
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Fig, 3. The critical Grashof number for various values of the Prandtl number as functions of the radius 
ratio : (a) Re = 0 ; (b) Rr = 50 ; (c) Re = - 50 ; (d) Re = - 100 ; (e) Rr = - 150. 
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decreases except at the transition points. The flow 

is driven upwards due to the effect of the curvature 

(c~ > 0). For Re = -50, - 100 and - 150, the un- 

stable flow moves downward slightly (c, < 0) due 
to the downward motion of the inner cylinder as q+ 1. 
Therefore, the critical wave speed changes con- 
tinuously from negative to positive as the curvature 
increases. For Re = 50, the unstable flow is driven 
upwards. For Pr = 20 and Re # 0, the flow is driven 
upwards (c~ > 0) for smaller radius ratios, while it 
moves downwards (c~ < 0) for larger radius ratios. 
The critical wave speed for Rr = 0 and 50 decreases 
with an increasing radius ratio. The critical wave speed 

for Rr = - 50 and - 100 increases slightly with an 
increase in radius ratio. The appearance of the point 
of discontinuity is due to a switch of the buoyant 
mode, initially induced from the boundary layer near 
the outer cylinder, and switching to the inner cylinder 
as the curvature increases. 

4. CONCLUSION 

The stability of natural convection in a tall vertical 
annulus with the influence of inner-cylinder motion 
has been investigated using linear theory. As with the 
results for the vertical slot [4], when the shear mode 

is dominant (small Prandtl number fluids), the flow is 
stabilized by a downward motion of the inner cylinder. 
It is also destabilized by smaller upward motion and 
stabilized by faster upward motion. For a small 
Prandtl number fluid with a smaller radius ratio, the 
non-axisymmetric disturbance (m = 1) is most un- 
stable no matter which direction the inner cylinder 
is moving. For Re = - 150, the non-axisymmetric 
mode (m = 2) may replace the mode m = 0 and I in 
0.23 < q < 0.58. When the inner cylinder is moving 
upwards. the unstable flow is always driving upwards. 
As the inner cylinder is moving downwards, the 
unstable flow may change from downward to upward 
motion as the curvature increases. When the buoyant 
mode is dominant (high Prandtl number fluids), the 
flow is stabilized by the motion of the inner cylinder. 
As the inner cylinder moves, the most unstable mech- 

anism is switched from a buoyant mode generated by 
the boundary near the outer cylinder to the inner 
cylinder one with the increase of the curvature. 
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APPENDIX 

Equations (4a) and (4b) are derived as follows. Super- 
imposing on equations (2a)-(2f), the equations for an iso- 
thermal forced flow, bq,, yields 

dp Id dn 
-Gr-++- r- =O 

d= i ! r dr dr 
(Ala) 

rl RC 

“’ l-q Gr ( !-- 
@lb) 

(Ale) 

s 

I ,I -‘ii 
M.,rdr = 0 (AId) 

011 ‘i) 

and the equations for a buoyancy-driven flow, M’~, are derived 
from 

(A2a) 

(A2b) 

(A2c) 

The solution of )L’, yields equation (4a) : 

w,(r) = Ar’+Blnr+C 

where 

A= 
-Rr(l-q)(l-$+2$lnq) 

Gr(l +q)(l -$+lnq+$ Inq) 

Re A(1 +rl) B=---- ~ 
Grlnq ’ (1 -q)lnq 

C= Reln(l-q)+ A(l+q)ln(l-q) A 
Grlnq (1-7)lnrl (1 -rl)’ 

and the solution of W? yields equation (4b) 

7 
wz(r)= -zln[(l-~)ij+~~+Dlnr+G 

4lnq 4lnv 4 

where 

L)=T,,+ 1 
-----+ 

+ 

4lnq 4(1nq)> 4(1-4)‘lnq 

,-,-(l+q)ln(l-q)+ T0(1+4)ln(1--,I) 

4(1-q)(lnq)’ 4(l-q)lnq 

+$ln(l-4)-l To _-__ 
4(l-~)‘ln~ 4(l -a)’ 


